zGlue fabric reduces size of wearable tech: Page 2 of 2

August 22, 2017 // By William Wong
zGlue fabric reduces size of wearable tech
Silicon interposer technology allows multiple die to be combined onto a single chip. This is different from stack or multi-die chips that use wires to connect to a substrate. Essentially, the interposer is similar to a printed circuit board (PCB), but on a much smaller scale.

The system also comes with zGlue’s system and power management support. The power management support allows operation with a range of batteries, including lithium and NiCads, as well as low-voltage supplies. Systems have built-in voltage regulators. Eventually gGlue will have a zGlue ZiPlet Store where developers can pick and choose chiplets.

The current configurations provide a working area up to 48mm2 and 20 I/O pins. Standard external interfaces include I2C, SPI, UART, and GPIO. Analog/RF connections up to 2.4 GHz are supported. The interconnect fabric supports up to 3 K connections.

At this point zGlue handles most of the system configuration versus using an FPGA- or PCB-style layout tool. Developers typically come to zGlue with a block diagram or an existing PCB layout that will be converted into a single chip.

It is possible to perform similar tricks found in PCB designs—such as laying out larger spaces for a chiplet—so that larger, typically higher-capacity or -performance chiplets can be utilized in additional products. This is a common methodology when companies need to deliver a range of products with increasing levels of functionality, capacity, or performance.

zGlue’s platform is not a fit for all compact embedded applications, but it can be a significant advantage for those where small, custom configurations are needed. It is significantly less costly than creating a custom SoC while providing similar flexibility when the appropriate chiplets are available.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.