Rechargeable Zinc batteries come back with water-based electrolytes

April 17, 2018 //By Nick Flaherty
Rechargeable Zinc batteries come back with water-based electrolytes
Despite all the focus on lithium and new battery materials, researchers in the US have gone back to zinc to develop a rechargeable, water-based battery.

The team led by researchers at A. James Clark School of Engineering at the University of Maryland combined old battery technology - metallic zinc - with a new water-based aqueous electrolyte. 

"Water-based batteries could be crucial to preventing fires in electronics, but their energy storage and capacity have been limited - until now. For the first time, we have a battery that could compete with the lithium-ion batteries in energy density, but without the risk of explosion or fire," said Fei Wang, a jointly appointed postdoctoral associate at UMD's Clark School and the US Army Research Laboratory (ARL). The team also included researchers from the US National Institute of Standards and Technology (NIST) and the paper was published in Nature.

Such an aqueous zinc battery could be used in consumer electronics and safety-critical applications in aerospace, military, and deep-ocean environments.

"Existing zinc batteries are safe and relatively inexpensive to produce, but they aren't perfect due to poor cycle life and low energy density. We overcome these challenges by using a water-in-salt electrolyte," said Chunsheng Wang, UMD professor of chemical and biomolecular engineering.

Zinc batteries suffer from low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. The new approach uses lithium salts at high concentrations and produces deliver 180 Wh/kg while retaining 80% capacity for over 4,000 cycles using a LiMn2O4 electrolyte. Using oxygen as the cathode in a zinc-air design delivers 300 Wh/kg (1,000 Wh/kg based on the cathode) for over 200 cycles.

The researchers identified the fundamental reason causing irreversibility in zinc batteries and found a way to alter the structure of positively charged zinc cations. This can also be used with magnesium and aluminium battery systems.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.