X-ray technique pinpoints path to non-toxic solar cells

Technology News |
By eeNews Europe

Sulfide materials, known as kesterites, contain the relatively common metals copper, tin and zinc, have been proposed as solar cell absorber materials because they are both non-toxic and made from readily available elements rather than rare and precious metals.

Experimental solar cells using Cu2ZnSnS4 (CZTS) have demonstrated energy conversion efficiencies of 8.4% and 12% for a seleno-sulfide analog. New structural information is crucial to improving on these figures still further.

Conventional X-ray diffraction techniques cannot distinguish between copper and zinc ions which makes kesterites hard to analyze. Now, Alain Lafond and his colleagues at Nantes University together with Pierre Fertey from Soleil synchrotron have been able to use a resonant diffraction technique to analyze a single crystal of the semiconductor CZTS.

The powdered precursor was prepared using a ceramic synthesis at a high temperature (1023 K) from the corresponding element Cu, Zn, Sn and S. The product is heated for a further 96 hours to anneal it before it is plunged into ice-water to lock in the chemical structure present at that elevated temperature, a process known as quenching. Tiny single crystals of sufficient quality for X-ray diffraction were picked out of the powder.

A perpective view of the ordered kesterite structure.
(Photo Credit: Alain Lafond, et al.)

The researchers used laboratory powder X-ray diffraction and energy-dispersive X-ray spectroscopy analyses to test the purity of their product. They then carried out high-performance resonant diffraction on the CRISTAL beamline at the Soleil French synchrotron, which gives them the possibility to adjust the radiation wavelength in order to enhance the contrast between copper and zinc.

The data they obtained showed the annealing process generates a disordered structure that can be distinguished from the ordered kesterite structure despite the otherwise similar X-ray scattering pattern that would be generated by the copper and zinc ions in the ordered form. The team points out that the fabrication process for making a thin absorber film from CZTS in a solar panel is carried out at an elevated temperature and the disordered form is likely to be the active form produced which probably precludes high photovoltaic performance.

The findings offer important clues for the development of CZTS and related materials that avoid expensive and rare materials such as indium and tellurium in solar cells.

"The next step in this research is to determine the relationship between the synthesis conditions (quenching or slow cooling) and the actual Cu/Zn distribution in the kesterite structure," explained Lafond.


Lafond et al. (2014). Acta Cryst. (2014). B70, 390–394

Related articles and links:

News articles:

Solar cell efficiency – Is it all in the mix?

Photonics breakthrough advances thin-film solar cell performance

Light wave filtering technique boosts photovoltaics efficiency potential

III-V solar cells on graphene break efficiency record


Linked Articles
eeNews Power