Iron based dyes promise cheaper solar energy applications

Technology News |
By eeNews Europe

The results are presented in the latest issue of Nature Chemistry.

The Lund researchers are working on solar cells consisting of a thin film of nanostructured titanium dioxide and a dye that captures solar energy. Today, the best solar cells of this type use dyes containing ruthenium metal – a rare and expensive element.

“Many researchers have tried to replace ruthenium with iron, but without success. All previous attempts have resulted in molecules that convert light energy into heat instead of electrons, which is required for solar cells to generate electricity,” explained Villy Sundström, Professor of Chemical Physics at Lund University.

Researchers at the Chemistry Department in Lund, in collaboration with Uppsala University, have successfully produced an iron-based dye that is capable of converting light into electrons with nearly 100 per cent efficiency.

“The advantage of using iron is that it is a common element in nature. It can provide inexpensive and environmentally friendly applications of solar energy in the future,” said Kenneth Wärnmark, Professor of Organic Chemistry at Lund University.

By combining the experiments with advanced computer simulations, the researchers are able to understand in detail required design concepts for the iron molecules to work. This knowledge is now being used for further developing the iron-based dyes. More research is needed before the new solar cell dye can be used in practice, but there are high hopes.

“The results of the study suggest that solar cells based on these materials can be at least as effective as those of today that are based on ruthenium or other rare metals,” claimed Sundström.

The discovery could also advance research on solar fuels in which, like in photosynthesis of plants, water and carbon dioxide are turned into energy-rich molecules – solar fuel – with the help of sunlight.

“We envision that the new iron-based molecules could also drive the chemical reactions that create solar fuel,” suggested Wärnmark.


Iron sensitizer converts light to electrons with 92 % yield.
Tobias C. B. Harlang, Yizhu Liu, Olga Gordivska, Lisa A. Fredin, Carlito S. Ponseca, Jr., Ping Huang, Pavel Chábera, Kasper S. Kjaer, Helena Mateos, Jens Uhlig, Reiner Lomoth, L. Reine Wallenberg, Stenbjorn Styring, Petter Persson, Villy Sundstrom & Kenneth Warnmark

Nature Chemistry (2015) doi:10.1038/nchem.2365 Published online 12 October 2015

Related articles and links:

News articles:

Nanohoops: A new approach to energize future devices

Elon Musk targets high-volume solar panel dominance

Invisibility cloak focuses on enhancing solar cell efficiency


Linked Articles
eeNews Power